

Mo-alloys for LWR Fuel Cladding to Enhance Accident Tolerant

Bo Cheng
DOE – FCRD Conference via Webinar
August 21, 2013

Basic Requirements for Accident Tolerant Fuel Cladding

- Good fuel reliability under normal operation
 - Can meet fuel design, operation, and licensing constraints
- Good high temperature properties at 1200-1500°C:
 - adequate tensile & creep strength: maintain core coolability
 - resistant to steam oxidation: reduce heat and hydrogen generation
- Viable economics
 - acceptable neutronic absorption cross sections
 - material availability at reasonable costs
- Fabricable into full length cladding tubes
 - Can be hermetically sealed
- No fuel storage and disposal issues

Coated Mo-alloy Cladding Design

- Why Mo alloy?
 - Zr-based alloys lose strength at >800°C
 - Fe based alloys lose strength at >~1000°C
 (Can extend to ~1200°C with ODS)
 - Mo-alloys may maintain sufficient strength at >1500°C

Melting Temp (°C)		
ZrO ₂	2715	
Al ₂ O ₃	2072	
Steel	~1400-1500	
Zr	~1800	
Мо	2623	

• Why coating?

- Mo-alloys are susceptible to oxidation by oxygen
- Need protective coating or advanced Mo alloys
- EPRI design: all metallic cladding
 - Compatible with LWR coolants/UO₂
 - At accident temperatures, Zr-coating completely converts to ZrO₂ and Al-containing steel forms a protective Al₂O₃
 - Target to protect Mo to ~1200-1500°C

Key Properties	Zr alloy	Mo	FeCrAl
Melting Temperature, °C	~1800°C	2623°C	1400°C
Oxidation resistance - Steam	to 500-1200°C	to 500°C	to 1300°C
Oxidation resistance - Reducing gas	hydriding	to 2000°C	?
Tensile and Creep Strength	Nil at >800°C	to >1500°C	
Material cost	Average	Average	
Neutronic absorption	Low	Higher (Mo-95 depleted Mo ~same as Zr)	~Mo
Fabricability into long tube	Good	ОК	ОК
Hemetically sealed/welded	Good	Possibel for some alloys	
Compatible with coolant (corrosion	Good	Need protection with Zr-alloy or FeCrAl	
Thermal-mechanical compatibility (Power ramp, RIA, Swelling)	Good	Appears OK	
Wear resistance	Adequate	Very High	Very High
Irradiation embrittlement	Adequate	Relatively lower than Zr	?
Radioactive waste issue	No	No	

Mo-alloy for LWR Fuel Cladding

Background

- Mo is reported to be:
 - Brittle and hard to form
 - Susceptible to oxidation by oxygen and steam at >~600°C
 - Compatible with most salts and liquid metals
- Mo alloy cladding
 - No prior use of thin-wall Mo tubes fabrication is challenging
 - Some high strength Mo-alloys exists
 - Mo-50%Rh, TZM Mo, ODS MO (+La₂O₃)
 - Some prior irradiation data from Bettis/ORNL study for a DOE funded Space Reactor Program
- Coating on Mo alloy
 - No prior work
 - Can import technologies developed for jet and rocket engines

Project Status: Mo Tubes

- Fabricated 8 mil (0.2 mm) tubes of pure Mo and Mo+La₂O₃ (ML) (Generation 1 tubes)
 - For coating, testing, and welding
 - Microstructure with highly deformed grains in longitudinal direction
- Fabricating Generation 2 tubes with fine equi-axial grain structure (Generation 2)
 - Should have adequate properties with ML alloy for irradiation
- Evaluating new Mo alloys for improved corrosion, oxidation resistance and ductility (Generation 3)

Project Status: Coatings

- Coatings successfully formed on Mo tubes and sheets
 - Physical vapor deposition (PVD) and Vacuum plasma spray (VPS) for Zr-alloy
 - VPS, PVD and HVAF (high velocity air fuel) for Al-containing stainless steel
- Process parameters optimized
 - Good bonding of coating on Mo
 - Good coating density
 - Good interface structure

Proof of Concepts

- Corrosion under Normal Operation

- Corrosion resistance under normal operation
 - Tests in autoclaves simulating PWR and BWR operation conditions
 - Both coatings have low corrosion and are intact after 30 days
 - Tests continue
- Corrosion of bare Mo
 - PWR water (3 ppm H₂) ~1 μm/mo (rate of dissolution)
 - BWR-HWC water: (0.3 ppm O₂) ~5 μm/mo
 - BWR-NWC (1 ppm O_2): ~50 µm/mo

Proof of Concept:

Resistance to Steam Oxidation at 1000-1500°C

- Test performed at:
 - UC Berkeley
 - GE-GRC
 - ORNL (pending negotiation)?
- Test conditions:
 - Temperature: 1000-1500°C
 (Only ORNL can test at >1200°C)
 - Pressure: atmospheric (15 psi) to ~400 psi
 - Duration: up to 7 days

Flowing Steam Test: 1000°C for 24 hours

- 6, 8, 24 hour tests completed; 3 and 7 days planned

Specimen	Before	After
Mo tube (8 mil)		
Zry-2 tube (26 mil)		
Al containing steel (FeCrAl) (16 mil)		
FrCrAl coated on Mo sheet (40 mil)		
FeCrAl (2 mil) coated on Mo tube		
FeCrAl coated on Mo tube - polished		
Zry-2 (1.5 mil) coated on Mo tube		

Pleasantly surprising results: Mo is resistance to oxidation in steam

Proof of Concept: Tube Burst Test

- Tube diametral strength/ductility and coating stability

Burst Test-LED System

(Test planned for 4Q13 or 1Q14)

Additional Tasks

- Welding of Mo tubes (in progress)
- Mo tubes
 - Optimize tube fabrication procedure to improve diametral strength/ductility (Generation 2 tubes) (in progress)
 - Develop advanced Mo alloys for testing (started) (Generation 3 tubes)
- Coating
 - Making long coated tubes (in planning)
 - Mechanical co-reduction of coated tubes (in planning)
 - Economics and quality need for large scale production

Key Milestones

Complete steam oxidation tests
 Date: 4Q 2013

 Interim Feasibility Report: Corrosion and Oxidation Resistance and Bonding Strength of Coated Mo Tubes in Simulated Normal Operation and Accident Conditions (1100-1200°C).

Date 1st Q 2014

Coated Mo Tubes with Fine Grain Microstructure (Generation 2).

Date: 1st Q 2014

 Delivery of Coated Generation 2 Mo Tubes with Qualified Welding Procedure for Irradiation Tests. Dates: March 2014+ for ATR and Later for BOR60 and Halden

Irradiation Property Report Date: 4th Q 2016

Final Feasibility Report
 Date: 1st Q 2017

In-plant demonstration (segmented rods)? Date: 4Q 2020

Together...Shaping the Future of Electricity